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Abstract— Objective: During breast conserving surgery (BCS), 

magnetic resonance (MR) images aligned to accurately display 
intraoperative lesion locations can offer improved understanding 
of tumor extent and position relative to breast anatomy. 
Unfortunately, even under consistent supine conditions, soft 
tissue deformation compromises image-to-physical alignment and 
results in positional errors. Methods: A finite element inverse 
modeling technique has been developed to nonrigidly register 
preoperative supine MR imaging data to the surgical scene for 
improved localization accuracy during surgery. Registration is 
driven using sparse data compatible with acquisition during 
BCS, including corresponding surface fiducials, sparse chest wall 
contours, and the intra-fiducial skin surface. Deformation 
predictions were evaluated at surface fiducial locations and 
subsurface tissue features that were expertly identified and 
tracked. Among n=7 different human subjects, an average of 22 
± 3 distributed subsurface targets were analyzed in each breast 
volume. Results: The average target registration error (TRE) 
decreased significantly when comparing rigid registration to this 
nonrigid approach (10.4 ± 2.3 mm vs 6.3 ± 1.4 mm TRE, 
respectively). When including a single subsurface feature as 
additional input data, the TRE significantly improved further 
(4.2 ± 1.0 mm TRE), and in a region of interest within 15 mm of a 
mock biopsy clip TRE was 3.9 ± 0.9 mm. Conclusion: These 
results demonstrate accurate breast deformation estimates based 
on sparse-data-driven model predictions. Significance: The data 
suggest that a computational imaging approach can account for 
image-to-surgery shape changes to enhance surgical guidance 
during BCS. 

Index Terms— biomechanical models, breast conserving 
surgery, deformation, image-guided surgery, lumpectomy, 
registration 

I. INTRODUCTION 
N the United States, breast cancer is the most common 
cancer in women and will be diagnosed in an estimated 
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290,560 people this year [2]. The majority of these patients 
will be recommended for breast conserving surgery (BCS) [3, 
4], a tissue-sparing procedure that consists of surgical removal 
of the lesion and a margin of healthy tissue surrounding that 
lesion. Unfortunately, the patient position in surgery is very 
different from the position for most diagnostic breast imaging, 
making imaging information underutilized in surgery. For 
diagnostic magnetic resonance (MR) imaging, a patient is 
lying prone, or face down, with the breast pendant within an 
imaging radiofrequency coil. For diagnostic ultrasound 
imaging, the patient lies supine, or face up, with the arm fully 
abducted beside the head. For mammography, the patient is 
standing with the breast compressed between two plates. None 
of these imaging positions are representative of surgical 
position. In surgery, a patient lies supine with the arm 
outstretched laterally at 90°, i.e. in a T-shape. As a result of 
this incongruence between diagnostic imaging and surgical 
presentation, it can be challenging for surgeons to relate the 
tumor location in a medical image volume to its intraoperative 
counterpart on the operating table. In addition, studies have 
emerged demonstrating that switching from prone to supine 
imaging presentations induces tumor shape and size 
differences, as well as a shift in the tumor position with 
respect to all available anatomical landmarks [5-7]. Even 
under ideal circumstances when a patient remains in a supine 
configuration during imaging, simple 90° abduction of the arm 
results in significant shifts and shape changes in breast tissue 
[8]. In fact, even simple intraprocedural changes such as small 
rotations of the operating room table can result in significant 
remaining alignment errors after rigid registration [8].  

In an effort to overcome difficulties surrounding 
intraoperative lesion localization during BCS, several 
techniques have been established to provide positional 
information during surgery. Wire-guided localization involves 
inserting a guide wire into the center of a tumor using cross-
sectional image guidance. In surgery, the surgeon uses the 
wire as a guide path to the region of interest. However, in 
radiology the guide wire placement technology is 
geometrically constrained and can lead to resection paths that 
are suboptimal. Additionally, as these wires are placed 
potentially hours before the surgery, the protruding wire can 
become displaced. Most importantly, even with optimal wire 
placement and successful resection along the wire path, the 
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surgeon must estimate the relative position of the wire tip 
within the lesion and must also approximate the exact tumor 
boundary surrounding the unseen wire tip when resecting a 
suitable surgical margin. 

Though guide wire approaches are still in use, in the past 
decade, the expanding use of implanted seed-based markers 
(e.g. radioactive, magnetic, and radar reflector seeds) is 
beginning to replace guide wire approaches. For seed-based 
methods, a small localization marker is implanted near the 
lesion by radiology in the days or weeks before surgery. The 
placement of the marker is then confirmed with imaging. The 
seed is localized intraoperatively using a handheld probe that 
reports the seed-to-probe distance. Though these seed-based 
techniques offer improvement over wire guidance, reoperation 
rates remain high due to residual disease after resection, or 
positive margins. Average reoperation rates are reported up to 
30%, with most averages around 10–20% [9-11]. These 
methods provide seed location and allow for unconstrained 
trajectory to a target, but they cannot provide guidance for 
boundary management during resection to excise the precise 
deformed lesion shape. In recent years, reoperation rates have 
plateaued around 10–20% [10, 12, 13], suggesting that these 
approaches may be at their resolution limit. 

Intraoperative MR imaging can provide the shape of the 
tumor on the operating table, but requires the use of 
nonmagnetic tools and interruption of surgery for imaging [7]. 
Additionally, intraoperative MR is not widely available, as 
most operating rooms are not equipped with MR scanners. 
Alternatively, ultrasound can be used within the sterile field 
throughout the procedure to visualize echogenic tumors 
intraoperatively. The transducer can also be used to investigate 
the resection cavity for remaining tumor after the initial 
excision. One of the largest drawbacks to intraoperative 
ultrasound is that not all lesions are visible on ultrasound. 
Though intraoperative ultrasound provides low rates of 
positive margins (2–14%) [14-16], only 50% of non-palpable 
tumors are visible on ultrasound [17]. There remains a need 
for 3D guidance that can be used for a larger majority of 
patients. 

Image guidance systems can provide information about full 
tumor boundaries by registering, or aligning, preoperative 
imaging with the physical patient space. For BCS, these 
research systems typically use preoperative MR imaging [18-
20] as it offers high sensitivity [21, 22] and, when performed 
in a supine position, can provide an improved understanding 
of intraoperative tumor shape and position [6, 23, 24]. There 
are several ways supine MR data have been leveraged in the 
operating room. Sakakibara et al. positioned patients in a 
surgical pose for MR imaging and used a projector to display 
tumor extent directly onto the breast surface during surgery. 
This method produced smaller resection volumes and lower 
positive margin rates than wire guidance [25]. Recently, Wu et 
al. achieved 18% positive margin rates by tracing tumor 
positions onto the skin surface using a patient specific 3D 
printed breast mold derived from supine MR imaging [26]. 
These methods show the value of supine MR in determining 
intraoperative tumor extent. However, their reliance on a skin 

surface projection still provides limited understanding of 
tumor depth and makes them inadequate for complete 3D 
margin management during resection. 

Image guidance systems that incorporate 3D renderings can 
show the full tumor extent based on preoperative imaging. An 
image guidance system from Pallone et al. expanded upon 
these skin surface projections by including a 3D model view 
and tracked tools [27]. When evaluated on 69 patients in a 
randomized controlled prospective study, their system showed 
a 9% positive margin rate under current margin guidelines, 
which was lower than for wire-guided BCS. Though this did 
not meet a level of statistical significance (p=0.08), it is 
certainly suggestive [19]. In separate work, Perkins et al. 
integrated MR imaging into an augmented reality system for 
BCS with promising qualitative validation [20]. 

Although the aforementioned approaches aim to display 
preoperative tumor extent registered to the intraoperative 
space, the reliance on rigid registration between image and 
physical spaces represents a substantial limitation. Though 
simple linear shifts are easily accommodated with rigid 
approaches, there is a considerable degree of nonrigid 
deformation that occurs between imaging positioning and 
surgical presentation, even for supine-to-supine registrations 
[8]. Abduction of the arm, re-positioning of the patient, and 
rotation of the operating table all contribute to discrepancies 
between imaging and surgical tumor location. Due to these 
nonrigid shifts, residual error after rigid registration can be 
large—on the order of 10–30 mm on the surface [8]. 
Localization inaccuracies can lead to larger resected specimen 
volumes, positive margins, or both. In fact, in qualitative 
evaluation, [20] notes the conspicuous need for nonrigid 
correction due to obvious misalignments after rigid 
registration. 

Nonrigid deformation correction for breast cancer surgery 
has been limitedly explored, especially within the context of 
the clinically relevant supine-to-supine registration problem. 
However, initial findings suggest that nonrigid registration 
approaches can improve accuracy for BCS. Ebrahimi et al. 
observed deformations from full abduction of the arm in 
supine MR images, and used thin plate splines on 24–34 
fiducials well distributed across the breast surface to correct 
for deformations. Though the method had no biophysical link, 
accuracy at tumor centroids in six patients improved from 3–
18 mm with rigid registration to 1–10 mm. However, 
improvement across all cases was variable [28]. Although the 
approach performed very well for some cases, in one case 
error actually increased with nonrigid registration. 

Conley et al. introduced a nonrigid correction method that 
employed a forward solved finite element method (FEM) 
using sparse data collection in a mock-intraoperative setting 
[18]. Following preoperative supine MR imaging, mock-
intraoperative data were collected including surface fiducial 
locations marked with tracked tools, surface collection with a 
laser range scanner, and the chest wall position measured with 
tracked ultrasound. An initial image-to-physical rigid 
registration was performed, and the remaining fiducial 
mismatch was used to estimate surface displacements. A 
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patient specific breast mesh was assumed to experience 
loading in the craniocaudal direction only at inferior and 
superior mesh boundaries. This work reduced two tumor 
centroid errors from 6.5 and 12.5 mm with rigid registration to 
5.5 and 5.3 mm after correction, respectively [18]. Although 
the nonrigid approach offered improvement, the number of 
cases was limited and the value of the method was 
inconsistent, offering 15% and 58% improvement in the two 
cases evaluated. While the work was interesting, 
unfortunately, the assumption of only craniocaudal boundary 
forces from observed surface fiducial movements is likely a 
limitation. The approach did not account for displacements in 
the medial-lateral, and anterior-posterior directions which 
collectively are approximately equal to the craniocaudal 
displacements according to a recent study by Richey et. al. [8]. 

In the work presented here, an inverse modeling approach is 
employed to predict breast deformation from abduction of the 
arm. In contrast to forward models, inverse modeling 
approaches can be designed to reconstruct forces at the 
anatomical locations that experience true mechanical loading. 
Here, the linearized iterative boundary reconstruction (LIBR) 
method, as presented in [29], has been modified for clinical 
application in BCS. The LIBR method solves for a distributed 
profile of applied mechanical loading that produces the 
observed intraoperative breast shape change given a set of 
sparse data constraints. Once the shape change has been 
reconstructed, a navigation system can be updated with a 
deformed image volume that constitutes a computational 
image of the new tissue state. Another important contribution 
of this work is the degree of validation that is offered in the 
evaluation. Previous work in nonrigid breast registration has 
been very limited. Here, the modified LIBR approach is 
evaluated on 157 subsurface targets well distributed within the 
breast volumes of n=7 human subjects, thus providing a global 
volumetric evaluation of target registration errors. 

II. METHODS 

A. Overview of Experimental Protocol 
A mock operating room (OR) experiment was conducted on 

n=7 healthy volunteers. Supine MR imaging provided a mock-
preoperative scan with the arm at the subject’s side. Repeat 
imaging was conducted with the subject in an alternate 
configuration with the ipsilateral arm fully abducted. The 
supine MR with fully abducted arm was treated as a mock-
intraoperative configuration, from which sparse data were 
extracted to represent an extent feasible for intraoperative 
collection. This extent is representative of acquisition in 
physical surgical space that would remain minimally 
disruptive to surgical workflow. With data obtained in the 
mock-preoperative and the mock-intraoperative states, a novel 
image-to-physical registration approach was performed and 
evaluated. Accuracy assessment involved transforming novel 
(not used as part of the registration) subsurface targets from 
the mock-preoperative location to their predicted mock-
intraoperative location and then comparing to the manually 
measured counterpart in the acquired mock-intraoperative 

state. The evaluation involved on average 22 ± 3 subsurface 
targets across the data set, comprising a total number of 157 
corresponding target points. Lastly, as patients generally have 
biopsy clips and/or a localization marker implanted in the 
breast prior to surgery, the evaluation experiment was 
extended to include the impact on alignment if a single 
subsurface feature could also be incorporated into the sparse 
set of intraoperatively acquired data.  

B. Human Imaging. 
Data were collected on seven healthy volunteers as approved 

by the Institutional Review Board at Vanderbilt University 
(protocol code 130038, date of approval 11/11/2015). 
Volunteers ranged from 23 to 57 years of age (average age of 
29 ± 12) with breast volumes of 398 to 1228 cm3 (average 
volume of 688 ± 256 cm3). As noted above, the mock-
preoperative imaging state involves supine imaging with the 
arms down within the closed MR bore. As discussed, surgical 
positioning involves the arm abducted 90° in a T-shape 
orientation and previous work supports significant shape 
change between these two states [8]. This configuration is not 
possible within the scanner. Here, to provide full volumetric 
MR data for comprehensive subsurface validation, the fully 
abducted position was used to approximate the surgical 
position. It should be noted that this represents a more 
considerable challenge than the T-shape surgical presentation. 
In previous work, the shape change for the fully abducted arm 
is approximately 45% larger in magnitude than the halfway 
abducted surgical presentation [8]. 

With respect to specific protocol, two supine MR images 
were obtained sequentially: one with the arm down beside the 
torso, and a second with the arm up beside the head. In both 
scans, the contralateral arm was down. Before scanning, 26 
fiducials (IZI Medical Products, Owing Mills, MD) were 
evenly distributed across the breast surface. These fiducials 
are visible in both MR images and serve as corresponding 
surface points. Due to the significant breast shifts, after 
abduction some fiducials moved to outside the image field of 
view; at least 23 corresponding fiducials were recognized in 
each case. Images were obtained on closed bore 3T Phillips 
scanners using a 16-channel torso coil with padded support to 
reduce compression of the breasts. In one case a plastic cage 
was placed around the subject’s torso to fully suspend the coil, 
eliminating tissue compression. It should be noted that the 
plastic cage wholly eliminated breast compression (similar to 
proper application of padded coil support) with the added 
benefit of simplifying subject repositioning. A THRIVE 
sequence was used with one of two voxel resolutions, 
0.357×0.357×1 mm3, or 0.391×0.391×1 mm3 voxel size. The 
THRIVE pulse sequence does not compensate for respiratory 
and cardiac motions. However, motion artifacts were not 
noticeable for the majority of volunteers in this study. Though 
one subject had noticeable respiratory artifact, this artifact was 
small enough that image features were still able to be selected 
with no change to the imaging procedure (e.g. respiratory 
gating).  
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C. Image Derived Data 
The breast volumes of both the mock preoperative and 

intraoperative breast state were segmented manually to include 
the skin, ligaments and adipose tissues. Chest wall was not 
included in the breast tissue segmentation. To improve the 
speed of segmentation, automatic interpolation in ITK-SNAP 
[30] was used, segmenting every 5-10 slices in the axial 
direction. Generally, an experienced user takes 15-30 minutes 
to segment the breast depending on complexity of the breast 
shape. Custom mesh generation software was used to generate 
patient specific 3D meshes from the breast segmentations of 
both states [31]. Meshes were discretized to tetrahedral 
elements with 4 mm edge length. Mock-preoperative breast 
meshes ranged from approximately 6,500–18,000 vertices. 

The supine MR images provided the following data as 
shown in Figure 1: (1) corresponding locations of the MR-
visible synthetic surface fiducials, (2) the breast skin surface, 
(3) the chest wall, and (4) subsurface feature locations used for 
validation. All features were designated manually, and all 
surfaces were subsampled from the boundary of the patient 
specific 3D mesh. To simulate realistic intraoperative data 
collection, a sparse data set was taken from the mock-
intraoperative state (arm-abducted MR image). For the mock-
intraoperative state, the sparse chest wall data included a set of 
chest wall contours simulating collection from 7–10 linear 
probe ultrasound images with 40 mm width. It should be noted 
that the distribution of chest wall sample contours was based 
on previous work in a tracked ultrasound study measuring the 
chest wall in a mock-intraoperative setting using a BK5000 
18L5 linear probe (BK Medical UK Ltd., Peabody, MA) [8]. 
Contours were designated manually, each contour taking only 
a few seconds to segment. With respect to the breast skin 
surface, intraoperative segmentations were subsampled from 
the breast mesh boundary nodes to only include intrafiducial 
surface points. This process ensures that the extent of the 
intraoperative skin surface is entirely contained on the 
preoperative mesh. Lastly, the subsurface features used for 
validation were selected manually, choosing an average of  

22 ± 3 (ranging from 18–26 across the data) well distributed 
homologous points for each subject. Throughout the seven 
breast volumes, a total of 157 corresponding points were 
identified. 

D. Nonrigid Deformation Correction 
This work employs the linearized iterative boundary 

reconstruction (LIBR) method, recently presented by 
Heiselman et al. [29], modified for breast-specific data. Here, 
breast deformations are assumed to be isotropic, 
homogeneous, and linearly elastic. The method supposes that 
tissue deforms according to the Navier Cauchy equations, 
which govern linear elasticity at static equilibrium [32]. Here, 
the Galerkin method of weighted residuals [33] using 
conventional linear local Lagrange polynomial interpolants 
with tetrahedra is used to determine approximate 
displacements which come close to the unknown true 
displacement field.  

Briefly, the LIBR method solves for a set of boundary 
condition displacements that produce the observed 
intraoperative deformation state. A series of control points on 
the model surface are perturbed in each of the three Cartesian 
directions. Perturbations are in the form of displacement 
boundary conditions, i.e. Dirichlet conditions, and the 
resulting deformation solution is computed using the finite 
element method. Each point loading is relaxed to establish an 
equivalent distributed load with identical far-field behavior as 
the point source. The relaxed displacements resulting from 
each control point perturbation embody independent modes 
that characterize local responses to forces applied to the tissue. 
These deformation solutions can be linearly combined to 
iteratively reconstruct intraoperative organ deformations based 
on optimizing the objective function from [29],  

Ω(𝜶, 𝝉, 𝜽) = 	*
𝜔,
𝑁,,

*𝑓/
0

12

/34

	+	𝜔6𝑓6
0																(1) 

where 𝑓/	represents the distance between the position of an 
intraoperative data point provided to the correction algorithm 
and its counterpart on the registered preoperative model, 𝑓6  
represents the strain energy of the deformation, 𝜔, represents 
the weight of a feature 𝐹, 𝑁, represents the number of points 
within feature 𝐹, and 𝜔6  represents the strain energy weight. 
The objective function is parameterized over a weight vector α 
that encodes the deformation state, and rigid transformation 
parameters 𝝉 and 𝜽, which represent rigid translations and 
rigid rotations of the deforming model, respectively. 
Levenberg-Marquardt optimization is used, terminating when 
the step-wise error tolerance ∆Ω<10-12 is satisfied. Material 
parameters in the Navier Cauchy equations are set as in [29], 
with Young’s Modulus 𝐸 = 	2100 Pa and Poisson’s ratio,  
𝑣 = 0.45. 

The LIBR method reported in [29] is modified to reflect the 
breast localization data described above, and (1) becomes 

 
Fig. 1.  Exemplar data for one subject, rendered in ParaView [1]. Supine MR 
projection images (left) with nipple displayed as +, and extracted data (right). 
The model is evaluated at the subsurface features (red), which were not used 
to drive the correction. 
  

Data
Inferior View

Pr
eO

pe
ra

tiv
e

Da
ta

In
tra

Op
er

at
iv

e
Da

ta

Fiducials

Skin Surface

Subsurface Features

Supine MR Imaging
Anterior View

Data
Anterior View

Chest Wall

Exemplar data for one subject. Supine MR images (left) with nipple displayed 
as +, and measured data (right). The model is evaluated at subsurface 
features (red) not used to drive the correction.
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Ω(𝜶, 𝝉, 𝜽) = 	
1

𝑁A/BC
* 𝑓/

0

1DEFG

/34

+	
1

𝑁CH/I
* 𝑓/

0

1GJEK

/34

+	
1

𝑁LMNCO
* 𝑓/

0

1PQRGS

/34

+ 𝜔6𝑓6
0																					(2) 

with the assumption that each data component of the objective 
function equally impacts its evaluation (i.e. 𝜔,=1.0 m-2). The 
model-data misfit error, 𝑓/, for each feature is computed based 
on the type of correspondence, with MR-visible fiducials 
(abbreviated as fids) treated as corresponding points, and skin 
and chest wall data treated as point-to-surface 
correspondences (or sliding constraints) as described in [29]. 
The strain energy weighting factor, 𝜔6 , has been empirically 
determined and is fixed at 10-9 Pa-2. The modeling workflow is 
summarized in Figure 2.  

Control points serve as the action points of applied 
perturbations, and consist of 45 discrete locations dispersed 
across all the boundaries of the mesh, except for the skin 
surface. As in Heiselman et al., k-means clustering was used 
to evenly distribute control points across the control surfaces 
[29]. The distribution of 45 control points, in magenta, on a 
preoperative breast mesh is shown in the top right of Figure 2 
in anterior, medial, and posterior views. Tissue types are 
designated with skin in blue, sternum in orange, and chest wall 
in black. Internal tissue that is transected by the mesh is 
marked in grey. This control point distribution represents the 
boundary of the computational domain where mechanical 
displacements are applied with remaining areas assumed 
stress-free. Applied displacements ideally capture the forces 
internal to the subject’s body but external to the meshed 
computational domain, i.e. forces exerted by ligaments or 
tension on tissue adjacent to the meshed domain. It should also 
be noted that in some cases the breast surface did come into 

contact with the MR torso coil. However, these forces were 
minimized with the weight of the coil supported by padding or 
a plastic cage. Therefore, this contact was considered to have 
negligible influence on the registration.  

Throughout this work, surface fiducial registration error 
(FRE) and subsurface target registration error (TRE) are 
computed as the arithmetic mean and standard deviation of 
Euclidean distances between predicted data positions and the 
ground truth positions as measured in the mock-intraoperative 
MR. 

E. Impact from Including a Single Nearest Neighbor 
Subsurface Feature  

Clinically, it is quite possible to localize a subsurface point 
near the lesion intraoperatively. For example, before surgery, 
patients routinely have biopsy clips and/or localization 
markers implanted in the breast in close proximity of the 
tumor. These subsurface features serve to assist in localization 
during tissue resection and can be localized either with tracked 
ultrasound images or with other intraoperative localization 
approaches. On the former, approaches to account for 
deformations induced by ultrasound probe compression have 
been developed to enable accurate localization of subsurface 
targets with ultrasound [34]. With respect to the latter, 
investigators have developed custom seeds capable of being 
wirelessly tracked in 3D space during breast surgery [35, 36]. 

Given the common availability of a subsurface target near 
the region of interest, the impact of including a single 
subsurface feature on the LIBR approach was evaluated. For a 
given target, the nearest neighbor (k=1) subsurface feature 
was considered another tracked point and included as an 
additional input to the model. Thus k=0 indicates that no 
corresponding subsurface points were used. To accommodate, 
when k=1 the objective function (2) is modified to include this 
additional feature,  

 
Fig. 2.  Schematic of the method workflow, with precomputed steps (top) and intraoperative optimization steps (bottom). The nipple is consistently marked +. 
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Ω(𝜶, 𝝉, 𝜽) = 	𝑓ANTOUVN
0 +

1
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0
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/34

+	
1
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* 𝑓/

0

1GJEK

/34

+	
1

𝑁LMNCO
* 𝑓/

0

1PQRGS

/34

+ 𝜔6𝑓6
0,																						(3)	 

where 𝑓ANTOUVN  is the model-data fit at one subsurface feature 
point, treated as a corresponding point as outlined in [29]. 

Here, the additional feature is the target’s nearest neighbor, 
i.e. the subsurface point closest to the evaluation target of 
interest. The average distance from a target to its nearest 
neighbor was 15.0 ± 6.6 mm. One subsurface feature was 
considered a target and a model optimization was performed. 
The model optimization included the data outlined in (3), 
where 𝑓ANTOUVN  is the model-data fit at the single target’s 
nearest neighbor. Model accuracy was evaluated at the target 
of interest and across all surface fiducials. This process was 
then repeated, iterating through each target in the complete list 
of subsurface features.  

Throughout this study, the subsurface TRE was only ever 
evaluated at novel points, i.e. it is never evaluated at any 
subsurface points used to drive the optimization. However, 
surface FRE is reported separately as residual error at surface 
fiducials that were used to drive the optimization.  

F. Accuracy in Regions of Interest  
Approximately 50% of breast lesions have radii smaller 

than 5 mm, and 77–87% have radii under 10 mm [37, 38]. 
Therefore, if planning to resect 10 mm of healthy tissue 
surrounding a lesion, as suggested in [6, 25, 39], over 50% of 
lesions would have planned resection volumes within an r=15 
mm region of interest (ROI), and over 75% of lesions would 
fall well within an r=30 mm ROI. This means that the 
localization accuracy in these smaller regions of interest are 
clinically important.  

As subsurface features in this work were selected to offer 
full coverage of the breast volume, distances between 
subsurface features are generally larger than the expected 
distance from a lesion to its implanted biopsy clip or 
localization seed. Conventional standard of care considers 
localization markers to be accurately placed when they are 
within 10 mm of a lesion, but here the average distance 
between a target and its driving nearest neighbor was 15.0 ± 
6.6 mm. To extend the analysis, each subsurface feature was 
treated as a mock biopsy clip that was localized in the 
operating room (hereafter referred to as a clip). The model’s 
predictive accuracy was then evaluated by considering all 
targets within a region of interest (ROI) surrounding each clip. 
While the nearest neighbor analysis in the previous subsection 
provides an evaluation framework at every subsurface point, 
the ROI analysis provides analysis only locally in the 
immediate tissue neighborhood near a clip of interest.  

Radii were selected based on breast lesion sizes, offering 
localization accuracy within the ranges of realistic excision 
volumes (accounting for over 50% and 75% of patients for 
r=15 mm and r=30 mm respectively). A region of interest was 
defined centered around each clip using radii of r=15 mm, 
r=30 mm, and r=∞ mm. While this section focuses on local 
accuracy, it should be noted that a radius of r=∞ gives the full 

field improvement across the entire breast volume from the 
inclusion of one subsurface mock biopsy clip. As noted above, 
smaller radii describe accuracy in a local region of interest 
surrounding a mock biopsy clip.  

The model-based registration approach was then 
implemented using breast surface and chest wall data in 
addition to the single subsurface mock clip as the driving 
spatial information. The objective function for this analysis 
still utilizes (3). Here, the additional feature is the subsurface 
clip of interest, and 𝑓ANTOUVN  is the model-data fit at that clip. 
The model evaluation differs with r, as all target errors within 
the ROI are reported. This process was repeated with each 
model implementation using a different subsurface feature as 
the mock surgical clip. On average, r=15 mm ROIs included 1 
± 1 targets, and r=30 mm ROIs included 4 ± 2 targets. At r=∞, 
the number of included data points is 21 ± 3, i.e. all subsurface 
points are targets expect for the feature included in the 
optimization. Evaluating with a small radius (r=15 mm) limits 
the coverage of evaluation, discarding points with no nearby 
subsurface data since these more isolated features are outside 
the scope of what would be realistic in the clinic. If a 
localization marker were more than 10 mm away from the 
target lesion, an additional marker would be placed closer to 
the target.  

Though both the nearest neighbor and ROI approaches 
include one subsurface feature in each model optimization, 
they provide complimentary components of analysis. The 
nearest neighbor approach guarantees each subsurface feature 
is treated as an evaluation target exactly once. On the other 
hand, the ROI approach guarantees each subsurface feature is 
treated as an acquired data point included in the optimization 
function. The ROI approach, however, does not guarantee that 
every subsurface target is evaluated. As an example of this, if 
a subsurface feature is more than 15 mm away from all other 
targets, it will not be within any set of evaluation data at r=15 
mm. The number of ROIs (i.e. number of model 
optimizations) evaluated for each subject is reported. 

III. RESULTS 

A. Minimal Data-Driven Optimization 
Mean registration errors were compared with paired t-tests 
(a=0.05). When compared to point based rigid registration,  
the nonrigid deformation correction without subsurface feature 
drivers offers significant improvement in fiducial registration 
error (FRE) and target registration error (TRE) (p<0.001), 
from FRE of 7.9 ± 1.6 to 2.4 ± 1.3 and TRE of 10.4 ± 2.3 mm  
to 6.3 ± 1.4 mm (Table I and Table II). Precomputing the 
modes of deformation takes, on average 13 ± 4 minutes using 
64 processors on a 2.20 Ghz Intel® Xenon® CPU. The 
deformable correction takes, on average, 21 ± 18 seconds 
(median 14 s) for optimization on a single thread of a 2.20 
Ghz Intel® Xenon® CPU. Additionally, for each method the 
model improvement over rigid registration is reported as  

(NVVXVYEZEF[NVVXVK\KYEZEF)	

NVVXVYEZEF
× 100%.														 (4) 
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TABLE I 
SUBSURFACE TARGET REGISTRATION ERROR (TRE),  

MEAN ± STANDARD DEVIATION (MAXIMUM) IN MILLIMETERS  

Case Breast Volume 
(cm3) 

Point Based  
Rigid Registration 

Nonrigid Registration TRE 
 Nearest Neighbor 

k=0 k=1 
a 1228 9.1 ± 2.8 (15.0) 6.2 ± 2.4 (10.7) 4.0 ± 2.0  (8.8) 
b 692 11.3 ± 4.1 (19.5) 6.1 ± 3.4 (13.1) 3.8 ± 1.6  (6.8) 
c 663 9.7 ± 3.6 (21.0) 6.1 ± 3.3 (12.6) 3.8 ± 1.8  (8.1) 
d 638 11.4 ± 7.2 (24.5) 7.4 ± 4.0 (15.3) 4.3 ± 2.0  (9.2) 
e 614 10.8 ± 3.3 (15.9) 7.2 ± 2.7 (13.3) 5.2 ± 2.5  (9.9) 
f 588 14.0 ± 3.8 (19.0) 7.5 ± 2.7 (12.1) 5.7 ± 2.5 (10.2) 
g 398 6.5 ± 4.1 (14.2) 3.5 ± 1.9  (8.0) 2.5 ± 0.9  (4.4) 

Mean 689     10.4 ± 2.3    6.3 ± 1.4        4.2 ± 1.0 
Improvement over rigid registration       39%           60% 

 

 
Fig. 3.  Distribution of subsurface target registration error (mm) with the k=1 nearest neighbor subsurface feature included as model input for each target 
evaluation. For each case the target locations are shown in the preoperative, or arm down, breast mesh from the anterior view (top) and inferior view (bottom). 
The subject’s orientation is on the full-body diagram at the bottom left, with the blue box showing the approximate anterior field of view.  The nipple is 
consistently marked +. 
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TABLE II 
SURFACE FIDUCIAL REGISTRATION ERROR (FRE),  

MEAN ± STANDARD DEVIATION (MAXIMUM) IN MILLIMETERS  

Case Point Based  
Rigid Registration 

Nonrigid Registration FRE 
 Nearest Neighbor 

k=0 k=1 
a 9.3 ± 2.8 (13.6)  5.1 ± 2.4 (10.7) 6.0 ± 2.5 (12.8) 
b 9.6 ± 3.2 (17.3) 1.9 ± 0.9  (4.0) 2.9 ± 1.5  (8.5) 
c 6.9 ± 2.2 (11.4) 2.6 ± 1.2  (5.4) 3.7 ± 1.7  (9.3) 
d 6.3 ± 2.5 (14.4) 1.8 ± 0.9  (3.7) 2.4 ± 1.2  (8.1) 
e 9.0 ± 4.4 (24.6) 2.3 ± 1.2  (6.6) 3.4 ± 1.7 (12.4) 
f 8.3 ± 3.0 (13.6) 2.1 ± 1.3  (4.8) 2.9 ± 1.5  (7.7) 
g 5.5 ± 1.7  (9.5) 1.2 ± 1.0  (4.7) 1.8 ± 1.1  (6.3) 

Mean      7.9 ± 1.6      2.4 ± 1.3      3.6 ± 1.5 
Improvement over rigid registration 69%          54% 

 



>TBME-00492-2022< 
 

8 

B. Inclusion of a Single Nearest Neighbor Subsurface 
Feature 

The TRE significantly improves with the addition of 
subsurface feature data from k=0 to k=1 (p<0.001). 
Conversely, the FRE significantly worsens with the inclusion 
of a subsurface feature point from k=0 to k=1 (p<0.001). 
Subsurface TREs are presented in Table I, and residual surface 
FREs are presented in Table II. Spatial distribution of 
subsurface target error with the inclusion of the nearest 
neighbor subsurface point (k=1) is visualized in Figure 3. This 
figure shows both the broad distribution of targets, as well as 
the distances between targets and their nearest neighbors. Left 
breasts are reflected so each breast mesh is in the same 
anatomical orientation, with the arm on the left and the 
sternum on the right of the image, as indicated on the full-
body diagram. Breast volumes are also reported in Table I. 
While the model performs best in the smallest breast volume, 
for this dataset there is no observable trend with respect to 
volumes. Figure 4 shows the distribution of average error 
across the seven cases, and statistical comparisons. For all 
registration methods reported in Figure 4, each target is 
evaluated exactly once. 

C. Accuracy in Regions of Interest 
When evaluation was limited to a region of interest (r=30 

mm), registration error significantly decreased in comparison 
to evaluation across the whole breast with r=∞ (p<0.001). As 

the radius decreases, the TRE continues to significantly 
improve from r=30 mm to r=15 mm (p=0.001). For r=∞, the 
addition of one subsurface clip resulted in higher error when 
compared to TRE for the model run with no subsurface clip 
(p=0.026). In other words, although local target errors 
improve, far field errors worsen.  

Results for regions of interest with decreasing radii are 
presented in Table III and distribution of average target error 
is shown in Figure 5. As previously discussed, as the radius 
decreases, some clips no longer have targets within the region 
of interest and are therefore not included in evaluation. This 
behavior is reflected in the number of ROIs, also presented in 
Table III. Though the average number of regions evaluated 
remains constant from r=∞ mm to r=30 mm, the average TRE 
drops significantly, reflecting higher accuracy in a region of 
interest, even when model accuracy is evaluated across a wide 
spatial distribution of regions. While the average TRE 
improves significantly again when the radius is reduced to 
r=15 mm, the number of evaluated regions drops down to 14 ± 
5. This reduction in the number of regions evaluated means 
that our analysis is limited to the more central regions of the 
breast where subsurface features are more densely distributed. 
The density of subsurface points can be observed in Figure 3. 

 
Fig. 4. Comparison of registration error (mm) for point based rigid versus 
nonrigid registration with varied amounts of subsurface features, where k=1 
indicates that a neighboring subsurface feature is included in the model 
optimization. Significant differences exceeding p<0.001 are reported with *. 
  

*
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*

*

*

 
Fig. 5. Comparison of subsurface target registration error (TRE) in 
millimeters, varying the radius of the region of interest, r, centered on a 
subsurface clip included in driving the model. Dashed lines represent median 
TRE for rigid (red) and nonrigid (green) registration with no subsurface clips 
included. Significant differences exceeding p≤0.001 are reported with *. 
  

*

*

*

TABLE III 
SUBSURFACE TARGET REGISTRATION ERROR (TRE)  

FOR NONRIGID CORRECTION IN A REGION OF INTEREST (ROI) WITH RADIUS r AROUND 1 CLIP 
MEAN ± STANDARD DEVIATION (MAXIMUM) IN MILLIMETERS  

Case r = ∞ mm  r = 30 mm  r = 15 mm    
Avg ± std (Max) # of ROIs Avg ± std (Max) # of ROIs Avg ± std (Max) # of ROIs 

a 6.6 ± 2.4 (12.7) 22 5.3 ± 2.3 (10.9) 21 4.1 ± 2.1 (8.8) 15 
b 6.3 ± 3.1 (13.7) 25 5.0 ± 2.2 (10.6) 25 4.3 ± 1.9 (7.7) 21 
c 6.2 ± 2.8 (13.4) 25 4.9 ± 2.8 (10.7) 24 3.9 ± 1.6 (6.7) 14 
d 7.8 ± 3.7 (17.6) 26 5.8 ± 2.4 (11.3) 26 2.9 ± 0.9 (4.3) 17 
e 7.2 ± 2.8 (14.0) 21 5.8 ± 2.8 (12.5) 20 4.2 ± 2.0 (8.0) 13 
f 7.6 ± 2.7 (13.4) 18 6.1 ± 2.6 (11.4) 17 4.1 ± 1.6 (6.8) 8 
g 3.7 ± 1.8   (8.3) 20 2.6 ± 1.1  (5.8) 20 1.8 ± 0.7 (3.0) 8 

Mean     6.5 ± 1.4 22     5.0 ± 1.1 22      3.6 ± 0.9 14 
Improvement  38%        52%          65% 
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IV.  DISCUSSION 
The method presented here demonstrates state-of-the art 

localization in seven human breasts, with comprehensive 
target sampling in varying volumes. The method offers 
consistent, significant improvement with 50–60% correction 
over conventional rigid registration. This algorithm provides 
subsurface target errors consistently on the order of 1 cm or 
less in targets well distributed throughout seven breast 
volumes undergoing mock preoperative-to-surgical 
deformations. This modeling framework can correct for 
nonrigid deformations fast enough to provide accurate 
guidance at patient bedside. The presented method 
outperforms previous findings with less variability.  

This model correction technique combined with sparse 
intraprocedural data can be used to reconstruct computational 
images of the deformed anatomy for use in intraoperative 
guidance. An example of deformed computational images is 
shown in Figure 6 for case d. Qualitatively, the subsurface 
feature alignment improves significantly, along with the 
alignment of the skin surface and chest wall, displayed as grey 
contours in all panels. The feature indicated by the black 
arrow is not aligned for rigid registration (red) but becomes 
aligned when the nonrigid correction methods are employed 
(green and yellow). It should be noted that the feature 
indicated by the white arrow appears to be potentially aligned 
with rigid registration (red). However, in further multi-slice 
examination, there is still significant misalignment in the 
inferior/superior direction that cannot be visualized in this 2D 
example. With careful observation, there is a noticeable shape 
discrepancy and this is a result of the rigidly aligned feature 
being located several image slices inferior to the true feature 
location. Similarly, the nonrigid correction with no subsurface 
feature points included (k=0, green) is notably misaligned in 
the medial-lateral (left-right) direction near the white arrow; 
however, the two nonrigidly corrected images more closely 
predict the true shape of that feature and better align that 
feature in the inferior/superior direction. Finally, observing the 
same structure with the nearest subsurface neighbor (k=1) 
included as additional data, the reconstructed computational 
image shows excellent agreement in location and shape 
(yellow). It is also important to note that the included 
subsurface data point was ~10 mm from the feature of interest 
designated by the white arrow. Whereas the far-field accuracy 
is slightly compromised at the surface above the well-fit 
features, the k=1 approach improves alignment for the feature 
further away (designated by the black arrow) at approximately 
~30 mm away. It is this regional accuracy that is most 
clinically relevant within the context of margin management. 
Though even without the use of an additional subsurface 
feature, the k=0 approach (green) still shows significant 
improvement over conventional rigid registration (red). 

 Model accuracy is clinically relevant across the whole 
volume but demonstrates even higher fidelity in a region of 
interest around subsurface data. Results using the proposed 
method suggest that localization error of the tumor boundary 
is achievable to less than 4 mm on average within a 15 mm 
radius of a biopsy clip, and to 5 mm on average within a 30 

mm radius. In the context of breast lesion sizes as discussed in 
Section II.F with the planned margin of healthy tissue 
included, the large majority of patients would have resection 
volumes smaller than the regions of interest discussed here. 
Intraoperative localization accuracy for over 75% of patients 
can be expected to be on the order of 5 mm. For patients with 
smaller lesions – still over 50% of patients – accuracy of a 
guidance system using this method could be expected to be 
less than 4 mm on average [37, 38].  

Previous works evaluated performance solely based on 
tumor overlap metrics, limiting error analysis to one region of 
interest around the tumor. While tumor overlap is valuable for 
evaluating final oncological margins, it is incomplete for 
evaluating the general accuracy of a localization strategy. 
Point-based measurements instead provide precise accuracy 
measurements that are not subject to the ambiguities 
associated with surface or volume alignments. Additionally, 
because the full volumetric data provided many subsurface 
points, the analysis here was extended to include at least 8 
regions of interest in each breast volume. Though the 
proposed method remains to be evaluated in patients, local 
accuracy is reported in many regions of interest, and full-field 
accuracy is quantified across well-sampled precise points.  

Limitations of this study largely fall into the following 
categories: the use of full volumetric data from supine MR 
images, model assumptions, limited population, and the shift 
to existing standard of care. First, while the use of full 
volumetric data provides realistic extent and thorough 
validation targets, it does come with limitations. Although 
clinically acquired intraoperative data would likely provide 
fewer evaluation targets, true intraoperative measurement 
sources may include additional noise or localization errors. 
Tracked ultrasound measurements with probe deformation 
correction have reported localization accuracy on the order of 
3 mm in vivo [40], and electromagnetically tracked seeds have 

 
Fig. 6. An axial slice of registered computational images overlaid on the 
ground truth image in the fully abducted arm position for case d. In all 
panels, segmentations of the chest wall and skin surface are outlined in gray. 
The rigidly registered image is shown in red. The model deformed image 
computed without subsurface features (k=0) is shown in green. In yellow is 
the model deformed image computed with one additional subsurface point 
(k=1) approximately 10 mm from the feature indicated by the white arrow.   
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reported accuracies below 1 mm, though accuracy degrades 
with distance [41]. In the mock intraoperative setup in [8], 
reproducibility of surface fiducials manually designated with a 
stylus was measured to be 1.5 ± 0.1 mm (case d here). While 
these localization errors are not considered in this work, 
segmentation error may add similar noise and impact the 
results. In that same instrumentation analysis in [8], 
reproducibility of surface point picking in supine MR images 
was measured as 1.6 ± 0.4 mm, though this quantification 
cannot be directly translated to the localization error of 
subsurface points. Related to the use of MR data in this study, 
other limiting factors include image quality, segmentation 
error, and spatial distribution of validation targets. Many cases 
had few or no distinct features in the medial breast tissue as 
visible in Figure 3. Fortunately, this area of the breast 
experiences smaller displacements, and the bulk of breast shift 
occurs farther from the sternum [8].  

Second, in this model, precomputed modes of deformation 
are generated based on isotropic, homogeneous, and linear 
elastic assumptions. The results may be improved with a 
model that incorporates anisotropy, heterogeneity, co-
rotational or nonlinear elasticity, body forces, or a different 
distribution of boundary conditions. Though breast tissue is 
often considered hyperelastic, the linear elastic assumption 
here allows modes of deformation to be quickly scaled and 
combined for improved intraoperative localization. Despite 
this reduction in complexity, the model performance still 
significantly improves upon conventional registration and the 
approach using superposition of these linear modes makes 
model predictions fast enough to be feasible in the operating 
room. While outside the scope here, it would be interesting to 
compare performance with a superposition of hyperelastic 
modes, though a non-linear combination of these modes would 
be complex and a linear combination of these modes would 
alter some hyperelastic behavior. Similarly, accounting for 
local rigid body motion with techniques such as co-rotational 
finite elements may improve results further [42]. Constitutive 
models and large deformations are important considerations 
but their election must also be influenced by other 
considerations (e.g. computational speed, anisotropy, 
anatomical structures – Cooper’s ligaments, glandular tissue 
milk perfusion, etc.) 

Another limitation of current assumptions is that this 
registration approach is not well suited to account for volume 
changes, though breast volume varies with the menstrual cycle 
[43, 44]. Depending on the time between imaging and surgery, 
preoperative and intraoperative breast volumes may differ. 
While, the majority of breast cancer patients are 
postmenopausal [45], if hormonal changes in breast volume 
are later determined to be paramount within an image 
guidance framework, additional deformation modes could be 
considered to allow for volume changes without additional 
strain energy penalty as suggested in [46]. Alternatively, 
supine MR imaging could feasibly be conducted on the same 
day to minimize volume change effects. The suggested or 
allowable time between preoperative imaging and surgery 
remains to be investigated. 

Though the current the implementation does not consider 
intraoperative deformations due to incisions, future work 
should incorporate modes to model resection. Interestingly, 
there are some initial efforts toward this that also use 
deformation modes in the context of tissue retraction [47]. 
However, in related work, even a rigid registration framework 
at surgical onset was able to obtain reoperation rates lower 
than wire-guided localization (9% and 19% respectively) [19]. 
The work presented here shows a significant improvement 
beyond the accuracy of rigid registration, suggesting that a 
nonrigid correction framework could provide the accuracy 
required to push the field beyond the current 10-20% 
reoperation rates.  

 Similarly, model performance was not investigated with 
varied levels of input data sparsity. Effects of denser sparse 
data density and extent, especially along the chest wall, remain 
to be studied more completely.  Though it should be noted, in 
results not presented here, deformable correction was also 
evaluated using only the breast surface fiducials and skin 
surface. In these surface-driven corrections, the surface points 
are allowed to fit more closely at the expense of unpenalized 
subsurface structural misalignment. When compared to rigid 
registration, surface-driven correction still significantly 
improves FRE and TRE (p<0.001) with FRE of 2.2 ± 1.3 mm 
providing 72% improvement, and TRE of 6.6 ± 1.5 mm 
providing 39% improvement. When compared to deformable 
correction with surface and chest wall information (i.e. 
compared to model correction results reported in Section III.A 
with k=0) surface-driven correction improves FRE (p=0.006) 
and worsens TRE (p=0.049). Though these results 
demonstrate that model correction is valuable with surface 
data alone, more data and analyses are required to fully 
investigate the importance of intraoperative measurements of 
the chest wall position. 

 The effect of more limited surface data also remains to be 
evaluated. Feasibility of collecting the full breast surface has 
been demonstrated by several groups [18-20], but a stationary 
camera as in [48] is more practical for re-collecting surfaces 
without interfering with workflow to provide continued 
alignment beyond an initial registration. Surfaces collected 
with stationary cameras are often limited by line-of-sight 
constraints, especially for larger breast volumes. The effect of 
these line-of-sight constraints on data collection are not 
considered here, but should be investigated in future works. If 
necessary, tracked instruments could be used to collect 
intraoperative data to augment a camera-acquired surface. 

Third, the population of subjects included in this study is 
limited; the average age of volunteers in this study was 29 
years, and there are only seven subjects. The majority of 
breast cancer patients are between 50 and 70 years of age [49], 
and only one of the healthy volunteers here is in that age 
range, at 57 years. As tissue properties are known to vary with 
age and menopausal status, future works may investigate 
correction accuracy on breast cancer patients. With respect to 
the number of subjects, this limited sample size was sufficient 
for strongly powered statistical tests indicating nonrigid 
registration improves beyond rigid registration, and that the 
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inclusion of one subsurface point improves prediction 
accuracy even further. Future work could include correction 
accuracy across a wider range of ages and breast volumes. 

Lastly, there are a few considerations within the context of 
the existing standard of care for breast cancer. Though the 
proposed method necessitates supine MR imaging, it is not 
currently standard of care. However, in a recent study 
comparing diagnostic value of contrast-enhanced breast MR in 
120 patients with lesions undergoing both prone and supine 
imaging, interestingly there was no difference in image quality 
between prone and supine positions for both image resolution 
and diagnostic value [50]. The only difference was in 
geometric lesion extension which was to be expected given the 
change in loading conditions. Studies like the one presented 
here offer a rationale for changing diagnostic protocols for 
surgical candidates in the future. In addition, a paradigm shift 
that improves localization would likely result in improved 
patient outcomes and reduced costs associated with 
reoperations. Furthermore, if one could generate localizable 
biopsy clips, it would take full advantage of our findings 
regarding the impact of subsurface data. It would also have the 
benefit of eliminating the painful device placement procedures 
for seed-based methods used by many hospitals, and reduce 
the growing burden placed on radiology departments. 

V.  CONCLUSION 
 Existing image-guided breast surgery investigations have 

largely employed conventional image-guided surgery 
techniques that used rigid registration. These early 
investigations reflect accuracy and margin management 
similar to that of seed-based methods [19]. While anecdotal 
results using nonrigid approaches and sparse data have been 
promising [18, 28], the work herein is the first to significantly 
demonstrate the potential for better margin management by 
accounting for volumetric nonrigid deformations. When 
compared to conventional rigid registration, the method 
consistently provides significantly improved registration 
accuracy across all subjects. Furthermore, including just one 
nearby subsurface feature significantly improves registration 
accuracy even further and opens the possibility of integrating 
the capability with seed-based methods or similar alternatives. 
Another important strength of the work is that the approach is 
driven with realistic sparse mock-intraoperative data, and the 
registrations can be produced at clinically feasible speeds. 
While advancements are still needed, the proposed approach is 
robust, accurate, and compatible with surgical workflows such 
that it is quite reasonable to see this framework becoming a 
surgical technology as ubiquitous as image guidance has 
already become within neurosurgical standard of care. 
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