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Abstract— Objective: Deformable object tracking is common in 

the computer vision field, with applications typically focusing on 
nonrigid shape detection and usually not requiring specific 3D 
point localization. In surgical guidance however, accurate 
navigation is intrinsically linked to precise correspondence of 
tissue structure. This work presents a contactless, automated 
fiducial acquisition method using stereo video of the operating 
field to provide reliable fiducial localization for an image guidance 
framework in breast conserving surgery. Methods: On n=8 breasts 
from healthy volunteers, the breast surface was measured 
throughout the full range of arm motion in a supine mock-surgical 
position. Using hand-drawn inked fiducials, adaptive 
thresholding, and KAZE feature matching, precise three-
dimensional fiducial locations were detected and tracked through 
tool interference, partial and complete marker occlusions, 
significant displacements and nonrigid shape distortions. Results: 
Compared to digitization with a conventional optically tracked 
stylus, fiducials were automatically localized with 1.6 ± 0.5 mm 
accuracy and the two measurement methods did not significantly 
differ. The algorithm provided an average false discovery rate 
<0.1% with all cases’ rates below 0.2%. On average, 85.6 ± 5.9% 
of visible fiducials were automatically detected and tracked, and 
99.1 ± 1.1% of frames provided only true positive fiducial 
measurements, which indicates the algorithm achieves a data 
stream that can be used for reliable on-line registration. 
Conclusions: Tracking is robust to occlusions, displacements, and 
most shape distortions. Significance: This work-flow friendly data 
collection method provides highly accurate and precise three-
dimensional surface data to drive an image guidance system for 
breast conserving surgery. 

Keywords—breast, surgery, lumpectomy, computer vision, 
fiducial markers, image guidance, localization, marker design, soft 
tissue deformation.  

I. INTRODUCTION 
OMPUTER vision has been increasingly utilized in surgery 
for a wide variety of applications ranging from 

understanding surgical process to computer aided detection and 
navigation [1]. While its use in tool tracking has been a key 
component in standard-of-care guidance systems for decades, 
computer vision methods for soft tissue tracking have had more 
limited development. Several recent surgical technologies have 
utilized unique printed markers (e.g. ArUco [2] or ARTag [3] 
fiducials) to localize skin surface information during surgical 
procedures [4-6]. However, even in rigid scenarios, localization 
errors for these types of fiducials can be high. In a study 
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comparing 12 common marker dictionaries, localization error 
was over 7 mm on average for 0-75° viewing angles. Though 
two methods achieved accuracy suitable for surgical 
applications (below 2 mm), results are reported for relatively 
large tags (5 cm) mounted onto rigid, planar boards and viewed 
from close distances (0.05-0.5 m) [7]. Commercial systems for 
computer vision tracking of rigid tools, such as the Claronav 
MicronTracker, report 0.2 mm calibration accuracy from 0.4-
1.0 m distances, though viewing angles and lighting conditions 
are not reported [8]. 

While many vision-based toolkits for tracking markers are 
freely available and easily adoptable, their accuracy is limited 
[9], especially in the context of the dynamic surgical 
environment. These tags are designed to be mounted on rigid, 
planar surfaces. These rigid assumptions result in reduced 
detection rate and accuracy when fixed to nonrigid surfaces, 
such as skin in deforming surgical applications. Recently, a 
marker detection system has been proposed using deformable 
fiducial tags [10], but surgical use would still rely on a 
cumbersome process of printing and mounting specialized, 
large, and obstructive tags to skin in the sterile operating 
environment. Furthermore, in the context of image guidance 
systems, each point’s correspondence to its preoperative 
imaging counterpart is essential. When using these tag-based 
approaches, this correspondence is not intuitive to users 
because the marker patterns have no immediate relationship to 
the imaging data. 

The work herein presents a fiducial detection and tracking 
algorithm customized for surgical guidance applications with 
intuitive ink-based alphabetic labels hand drawn directly onto 
the skin surface. These letter-based fiducials enable three-
dimensional (3D) point measurements during surgery, so that 
information rich preoperative images can be aligned with the 
patient on the operating room (OR) table, enhancing surgeon 
understanding of tumor position and subsurface anatomy. 
While this automated skin-fiducial localization method can be 
used in the context of many surgical domains for image-to-
physical registration, in this work it will be evaluated in the 
context of breast conserving surgery (BCS) due to the 
deformable nature of breast tissue.  

With regard to the clinical application, there has been 
recognition that BCS could benefit from the addition of 
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improved surgical guidance in the process of tumor resection 
[11, 12]. In recent years, breast conserving surgery reoperation 
rates have plateaued at approximately 10-20% [13]. Primary 
contributors to these reoperation rates are the vast shape 
changes and deformations between diagnostic and surgical 
settings that make it difficult to reliably determine 
intraoperative tumor positioning and extent [14-17]. To address 
these shortcomings, an automated surface acquisition method is 
needed to continuously inform an image-to-physical alignment 
approach that enables intraoperative visualization and 
localization of tumor boundaries established in preoperative 
MR imaging. More specifically, an image guidance system can 
use this stream of intraoperative surface points to continuously 
register a preoperative image to the patient in the operating 
room, and provide the surgeon with the location of their tools 
in relation to the tumor and other breast anatomy. Breast image 
guidance systems often rely on rigid registrations with less than 
10 corresponding surface points [18, 19]. Extending beyond 
rigid alignment, a system that could measure 15-25 precise 
fiducials over the breast surface would potentially enable 
deformable soft tissue alignment techniques to facilitate lesion 
localization in the deforming breast during surgery. Since 
registration accuracy is ultimately dependent on data sparsity 
and coverage, the ability to quickly and accurately measure 
sufficient intraoperative localization data is critical for the 
utilization of image guidance. Corresponding points, i.e. points 
visible both in the preoperative image and on the breast in the 
OR, are an essential data source for guidance and correction 
frameworks. Though many approaches exist to measure 3D 
breast surfaces [20-24], to the best of our knowledge no 
approach exists to automatically extract landmark data from 
these breast surfaces in order to drive image-to-physical 
registration. Interestingly, even systems that acquire full surface 
data, rely solely on landmarks to provide alignment [18, 19], or 
incorporate landmarks to greatly reduce errors [23].  

To visualize intraoperative tumor boundaries, several image 
guidance systems for breast conserving surgery have emerged 
using corresponding fiducial points [5, 6, 19, 25, 26]. These 
initial research systems for BCS used rigid registration to align 
preoperative supine MR images to the patient in the surgical 
position. For example, Barth et al. developed a guidance 
approach using skin fiducials and rigid registration to actively 
guide surgery. The image guidance system nearly halved 
positive margin rates of residual cancer after resection when 
compared to conventional wire guidance, from 23% to 12% 
[19]. Though this study showed great promise, the results were 
underpowered for statistical significance. 

Another research prototype system for intraoperative breast 
tumor visualization used six ArUco tags to register virtual 
breast data to the patient and present the scene in mixed-reality 
[6]. These ArUco tag fiducials were not placed directly on the 
breast, but rather at the breast perimeter on the surrounding rib 
cage and just inferior to the clavicle, likely to avoid the dynamic 
deformations associated with soft breast tissue. While this 
placement provided rigid alignment, these fiducials could not 
capture the nonrigid shape changes [6]. Furthermore, the 
authors acknowledged difficulties in placing ArUco tags on 

corresponding locations associated with MR-visible fiducial 
locations.  

These rigid registration frameworks leave conspicuous 
residual misalignment after rigid registration [6]. To provide 
further context to the application, in BCS the patient’s arms are 
outstretched at 90° (in a T-shape), whereas in a conventional 
closed-bore MR imaging system, the patient’s arm would be 
positioned either down by the torso or up by the head to fit 
within the scanner. Though diagnostic MR imaging is generally 
performed in the prone position, tumors can change shape, 
volume and position when the patient moves to a supine 
position for surgery [14-16]. Many emerging guidance 
technologies rely on supine imaging [5, 18, 19, 26-32]. 
However, even when imaging and surgery are both performed 
with a supine body orientation, there are still large differences 
between imaging and surgical presentations that result in high 
residual alignment errors [33]. Quantitatively, for supine 
imaging-to-surgery position changes  maximum target errors 
after rigid registration were reported from 10.7-36.4 mm, 
indicating that a rigid registration approach is unlikely to be 
sufficiently accurate for resection.   

Beyond providing landmarks for rigid alignment as in the 
above systems, fiducials that are properly distributed across the 
breast could be used as a valuable source of deformation 
measurement [33] toward correcting misalignment due to breast 
shape changes [31, 34]. For example, Conley et al. presented a 
modeling framework with an initial rigid alignment using 
fiducials and ultrasound measurements of the chest wall 
followed by nonrigid correction driven by 6–7 surface fiducials 
[18]. While quite preliminary, compared to rigid registration the 
method improved tumor localization in surgical positioning by 
15% and 58% in the two cases evaluated. A method presented 
by Ebrahimi et al. used thin plate splines to predict volumetric 
breast deformations from 24-34 surface fiducials alone. In six 
patients, the average estimate of a tumor centroid had 3-18 mm 
of error after rigid registration, and 1-10 mm of error after the 
thin plate spline registration scheme [31]. Expanding on the 
work of Conley et al., a recent method for nonrigid correction 
driven with sparse ultrasound chest wall measurements and 23-
26 fiducials reduced alignment errors by 50-60% over rigid 
registration when evaluated across surface fiducials and 
subsurface targets [35].  

These advances toward sophisticated guidance approaches in 
BCS are encouraging, and common to the above systems is the 
need for intraoperative localization of fiducials, either by 
manual designation with an optically tracked stylus or by direct 
tracking with the use of an adhered marker. With the former, 
designating fiducial positions manually during surgery is 
tedious and the precision is heavily dependent on the user. 
Additionally, for soft tissues, measurement methods that 
contact the surface have been shown to be less accurate than 
noncontact measurements [36]. Despite the impracticality of 
manual methods, the latter option of adhered fiducials is 
complicated by the fact that fiducials near the surgical region of 
interest must be removed prior to commencing surgery. In [19], 
all fiducials are removed for surgery, limiting correction to only 
an initial alignment. Additionally, both methods are limited by 
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non-automatic measurement and labeling of fiducials, which 
consumes valuable time in the operating room for each 
additional fiducial identified during the procedure. 

The landscape of emerging guidance systems for BCS 
reveals a pressing need for rapid soft-tissue measurement 
techniques that can easily integrate into BCS workflow to 
enable novel alignment and localization approaches. The work 
presented here directly addresses this need by abandoning the 
concept of structured or printed fiducials, and instead 
investigating a novel approach with intuitive (English alphabet)  
fiducials inked directly on the breast surface and then tracked 
using image processing methods. The strategy is easily 
integrated into current workflow and the inked letter-based 
fiducials on the patient inherently correspond to labels that can 
be rendered in an image-guided display to provide surgeons 
with a convenient, intuitive map on a previously featureless 
breast surface. The automatic surface acquisition method uses 
simple image processing to detect fiducial labels and fiducial 
positions, and leverages conventional feature detection and 
matching to track these fiducial positions on the nonrigidly 
deforming skin surface through time. These fiducials that 
consist only of sterile ink can be tracked to provide continuous, 
automated, simultaneous, and precise fiducial collection in a 
dynamic operating room setting.  

II. METHODS 

A. System Overview 
As noted above, the BCS guidance instrumentation 

landscape is rapidly evolving and the realization under 
investigation here is shown in Figure 1a. For the sake of clarity, 
the overarching system is discussed here as an example use 
case. Briefly, the MR-visible fiducials shown in Figure 1b are 
adhered to the breast with images acquired in the supine breast 
orientation to closely resemble surgical positioning (note that 
abducted arm is not typically possible in conventional closed 

bore MR systems). After imaging, these fiducials can be ink-
marked directly on the skin, and then removed to provide a set 
of corresponding fiducials visible in both preoperative MR 
imaging and intraoperative physical space. The computer vision 
instrumentation of Figure 1a and the methods described below 
are used to track fiducial deformations continuously during 
surgery. The mock surgery challenge is shown in Figure 1c with 
independent stylus measurements available for validation 
(Figure 1c-right). With respect to the goals of the investigation 
herein, the methods, robustness, and accuracy associated with 
the intraoperative tracking phase (Figure 1c) are reported. 
However, it is important to note that the MR-fiducial position 
configuration acquired in Figure 1b serves as an initial spatial 
prior to enable error filtering for the intraoperative tracking 
methods described below. While the intraoperative 
measurement phase is the focus below,  the MR imaging data 
components are included for completeness. Lastly, the process 
of utilizing these types of intraoperative deformation 
measurements to nonrigidly align the 3D supine breast MR-
imaging volume to the physical tissue field has been addressed 
in a previous work [35].  

B. Human Data Collection 
Using the system shown in Figure 1a, data were collected on 

n=8 breasts across six healthy volunteers ages 23–57 (29 ± 14) 
with informed consent and approval from the Vanderbilt 
University Institutional Review Board (protocol code 130038, 
date of approval 11/11/2015). For two subjects, data were 
collected on both left and right breasts. For each breast, 26 MR-
visible fiducials (IZI Medical Products, Owing Mills, MD) 
were distributed on the breast surface. Supine MR images were 
obtained in two arm positions shown in Figure 1b: with the 
ipsilateral arm down resting beside the torso, and with the 
ipsilateral arm up resting beside the head. The arm-up MR 
image is considered the preoperative image for the arm-up 
mock-OR configuration, while the arm-down MR image is used 

 
Fig. 1 Overview of data collection and the arm configurations, or states, measured in each setting. (a) image guidance system (b) data collected 
from supine magnetic resonance (MR) images (for error filtering) with the distribution of fiducials. In the top right, fiducial positions visible in 
an axial image slice are indicated with purple arrows. (c) data collected in the mock intraoperative setting. 
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as a prior for the mock intraoperative states  with the arm fully 
adducted, and in surgical position. Fiducial positions were 
manually designated in each MR image. At least 24 fiducials 
were visible in each MR image, with some fiducials going out 
of view due to image size and large deformations from arm 
abduction. On average, 25.6 ± 0.6 fiducials (mean ± std) were 
designated within an individual MR image volume.  

After imaging, subjects were moved to a mock intraoperative 
setup where they lay supine with padding under the ipsilateral 
shoulder to simulate rotation of the OR table. The center of each 
toroidal MR-visible fiducial was marked with colored ink (red) 
shown in the center image of Figure 1b, and the fiducial was 
removed. Each fiducial, now a red dot, was then labeled with a 
capitalized English character in a second color ink (blue letter 
label) as in the center image of Figure 1c. The size of each 
character was approximately 3 cm in height, and each fiducial 
dot was approximately 2 mm in diameter. Visible skin markings 
(such as moles) that were the same color as fiducials were 
covered with a third ink color. Static fiducial locations were 
measured in three positions for each breast: arm up, surgical 
position (i.e. arm outstretched at 90°), and arm down. Fiducial 
locations were also designated manually using an optically 
tracked stylus (Polaris Vicra optical tracker, Northern Digital, 
Waterloo, ON, Canada), a tool typical in image guided surgery.  

Stereo images of the mock-operative field were collected 
with two Grasshopper stereo cameras (FLIR, formerly Point 
Grey Research, Richmond, BC, Canada) placed 0.9-1.2 m 
above the skin surface. Stereo cameras provided color images 
at 1200x1600 pixel resolution, and were calibrated using the 
method presented by Zhang et al. [37] in MATLAB’s 
Computer Vision Toolbox [38]. This calibration defines the 
relationship between the two stereo cameras. The point’s depth 

is constrained by its positions in the 2D images, and the known 
relationship between the cameras. Therefore, the 3D position 
can be triangulated, or reconstructed, from localized and 
matched 2D point locations. Reprojection error after calibration 
was on the order of 0.2-0.4 pixels. Stereo cameras were used to 
record videos of fiducial positions in the three static arm 
positions and throughout arm adduction at about 5 frames per 
second. Intermittently during video collection,  an ultrasound 
exam was conducted, providing procedural obstruction of the 
visual field. Video footage recorded during this process 
consisted of ultrasound gel application, probing the ultrasound 
transducer over the breast surface, and gel removal with a towel. 
Video frames were considered static if they contained breathing 
motion, but no other major motions, obstructions, or 
interference with breast tissue. Thin layers of ultrasound gel 
were not considered an obstruction. To assess realistic tracking 
performance, the algorithm tracks fiducial points throughout 
the full video duration, including arm adduction and ultrasound 
exams. This allows analysis before and after considerable 
motion and obstruction events. 

C. Algorithm Overview 
This surface tracking algorithm for image guided surgery 

uses handwritten inked fiducials that can be sterilized and 
remain on the skin throughout surgery. The algorithm is 
implemented in MATLAB 2021b using functions from the 
Computer Vision Toolbox [38]. Briefly, fiducials are localized 
in 2D images by leveraging the two ink colors and adaptive 
thresholding [39]. Fiducials are matched and tracked using 
KAZE feature matching [40] and point history. An overview of 
the algorithm is shown in Figure 2, best viewed in color. The 
algorithm is considered in two parts: localization and labeling.   

Fig. 2 Detection and tracking algorithm. Images cropped for visualization. (a) A color image from one of the stereo cameras (b) blue color 
component of the masked region of interest with boxed connected regions (blue), and 2D fiducial candidates (red) (c) 2D KAZE keypoints 
(green) with successfully matched 3D keypoints circled (magenta) (d) Output labeled fiducials in 3D space and (e) 2D keypoints labeled by 
bounding box for input into the feature history. 
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D. Fiducial Detection: Point Localization 
The color component is computed from the raw RGB camera 

images as the color ratio of each pixel according to 
                     𝐶𝑜𝑙𝑜𝑟	𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑐 ∈ {𝑅, 𝐺, 𝐵}) = 6

7898:
	                (1) 

for R, G, and B the red, green, and blue intensities, respectively, 
where c is the desired color channel. The color component 
range is normalized to 256. In the blue color component (c=B), 
adaptive thresholding is used to create a binary mask of the 
letter label regions. A bounding box is placed around each 
connected component. Within each bounding box, the red color 
component image (c=R) is computed and individually 
normalized to 256. This process provides maximum contrast 
between fiducial pixels and surrounding skin, from which a 2D 
fiducial candidate is identified as the centroid point in the 
region grown around the brightest pixel in the red color 
component. In Figure 2b, the blue color component image 
shows the bounding boxes resulting from adaptive thresholding 
in blue and the identified 2D fiducial candidates circled in red.  

KAZE feature detection and matching is used to obtain a 
sparse cloud of triangulated keypoints [40]. Detected KAZE 
keypoints (2D keypoints) are shown in Figure 2c in green, with 
keypoints successfully matched between left and right stereo 
images (3D keypoints) plotted as magenta circles. The 2D 
fiducial candidates from the red centroids are matched as 
follows. For each 2D fiducial candidate in the left image 
(candidateL), the algorithm determines the closest successfully 
matched keypoint from KAZE (keypointL, where its successful 
match is keypointR). In the right image, the 2D fiducial 
candidate (candidateR) closest to the keypointR is considered the 
correct match. Although KAZE produces a 3D point cloud 
(visualized in 2D space as the magenta circles in Fig. 1c), the 
keypoints have no correspondence to the MR image. This 
process of fiducial detection and matching ensures 
measurements of the inked fiducial points that correspond to 
imaging data. However, it should be noted that the closest-
keypoint assumption does yield some incorrect matches. 
Outliers are removed at this step by error filtering based on the 
difference in pixel-wise positions between left and right 
matched points. Outliers are filtered first by ∆y (where ∆y≈0 for 
these rectified images), then by ∆x (to remove outliers that 
represent unrealistic depth values). Next, matches are ensured 
to be unique. For all nonunique matches between fiducial 
candidates, the best candidate is chosen by the match that 
provides a difference vector [∆x, ∆y] closest to the median 
difference vector of all matched keypoints.  

E. Initialization 
On initialization, the user manually defines a single region of 

interest (ROI) for each camera and tunes the minimum and 
maximum letter bounding box sizes according to the size and 
variability of the letter labels. The main purpose of the ROI is 
to reduce the computational search space for several of the 
tracking steps. This reduction improves runtime for feature 
detection and eliminates many extraneous 2D fiducial 
candidates in an early phase of the algorithm. After the ROI is 
established, the ROI is dilated before applying the adaptive 
thresholding step on subsequent frames to ensure that the mask 

edge is sufficiently far from the letter labels and does not 
interfere with thresholding. Returned fiducials are required to 
be within the true, undilated ROI. Bounding box size limits are 
manually set to include all letter-labels. These four values (xmin, 
xmax, ymin, ymax) are defined once and applied to both image 
streams.  

Once the detection algorithm is initialized, the tracking 
algorithm is initialized in just one image. After automatic 3D 
fiducial detection, the 2D bounding boxes of these 3D 
candidates are presented to the user. For the case shown in 
Figure 2, there are 25 boxes presented to the user: boxes around 
all letters except “E”. The boxes are a subset of the blue 
bounding boxes displayed in Figure 2b. The user is instructed 
to manually box undetected fiducial labels (e.g. “E” in Figure 
2b), and manually label each box with its letter label. This user 
input serves to initialize the feature history. All 2D keypoints 
that fall within labeled bounding boxes are stored along with 
their features and labels. Examples of these labeled keypoints 
are shown in Figure 2e.  

Finally, when fiducial candidates arise too close together, 
e.g. due to a letter-label appearing discontinuous in an image, 
the candidate with the highest red color component intensity 
(averaged candidate intensity in the left and right images)  is 
kept and all other candidates are discarded. The algorithm 
therefore requires one additional parameter that defines a 
minimum allowable distance between fiducial candidates in 3D 
space. For the majority of cases, this parameter can be zero 
(unconstrained). However, for one case (case 1L), the 
parameter was set so that 3D fiducial candidates must be at least 
20 mm apart.   

In summary, initialization includes manually annotating in 
the first image frame: (1) one ROI for each camera, (2) 
bounding box size limits, (3) bounding boxes missed by 
automatic detection, (4) letter labels for bounding boxes, and 
(5) minimum distance between fiducials. 

F. Fiducial Tracking: Point Labeling 
In order for intraoperative camera data to be registered to a 

preoperative image, the fiducials must be labeled, defining 
correspondence to the fiducial positions in the MR image. 
Automatically labeling the 3D fiducial candidates relies on 
frame-to-frame KAZE feature matching [40]. In summary, 
labels are propagated through one camera stream by matching 
the 2D keypoints within bounding boxes to previously labeled 
keypoints. The label of a fiducial candidate is the most common 
label in its bounding box.  

Feature matching relies on storing feature history in three 
main phases: Phase 1: keypoints in the initial frame, Phase 2: 
keypoints in the previous frame, and Phase 3: the last seen 
keypoints. The feature history stores keypoint locations, feature 
vectors, and letter-labels. In Phase 1, a new frame’s intra-
bounding-box keypoints are matched to keypoints in the initial 
frame; the initial frame’s feature labels have the highest 
confidence since they were manually specified at the start of the 
procedure as described in the previous section. In the new 
frame, only unlabeled bounding boxes continue on to be labeled 
by the next phase. Next, in Phase 2, keypoints in these 
remaining bounding boxes are matched to the keypoints of the 
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previous frame. The previous frame is most likely to resemble 
the current presentation of features. Finally, the remaining 
unlabeled bounding boxes continue on to Phase 3 where 
keypoints are labeled using the last seen keypoints. The list of 
last seen keypoints for a given letter is defined as the most 
recent 100 points labeled with that letter. Since there are 26 
fiducial letter-labels, the size of this matrix is therefore 
restricted to 2600 features, letters, and point locations (recall 
that the feature history is only maintained for one camera image 
stream). When constructing the last seen keypoint matrix, 
points are added in descending time order prioritizing points 
that were successfully matched to the current frame. In priority 
order, points are added from the following lists until 100 
features are reached: (i) matched features from the previous 
frame, (ii) matched features from the last seen keypoints, (iii) 
unmatched features from the previous frame, and (iv) 
unmatched features from the last seen matrix. The last seen 
points add robustness to lighting variations and occlusions.  

After all boxes are labeled, uniqueness is enforced again. 
Letter duplicates are evaluated and the 3D fiducial candidate 
closest to the historic 3D fiducial location is kept, while all other 
candidates labeled with that letter are discarded. If the letter has 
not been previously localized in 3D, the point location is 
considered uncertain and all candidates for this letter are 
discarded.  

Here, a final stage of error catching is implemented that is 
unique to this application. Points that are sufficiently far from 
their MR counterpart are considered erroneous. More 
specifically, image-to-surgery rigid registration accuracy in the 
supine position has been previously measured with maximum 
surface target errors between 7.4 and 36.4 mm [33]. Using this 
characterization as a guide, fiducials were considered 
incorrectly localized if they were more than 40 mm from their 
MR fiducial counterpart. While this parameter is a constant in 
this work, if 40 mm proved inappropriate on another dataset, 
this parameter could be prescribed based on fiducial registration 
error (FRE) after the point-based registration of the tracked 
fiducials to their positions in preoperative MR. This error 
catching largely serves to remove points with incorrect left-
right matching causing erroneous triangulated 3D coordinates.  

G. Evaluation 
Three main performance metrics are evaluated: (A) 

localization accuracy of 3D fiducial detection, (B) tracking 
fidelity, and (C) tracking completeness.  

Beginning with the detection algorithm localization 
accuracy, 3D localized fiducial points were compared to the 
corresponding points localized using an optically tracked stylus 
tool (NDI Polaris Vicra, Waterloo, Ontario, Canada), which is 
a standard in image guided surgery due to its reliable accuracy 
[41]. In each static arm position, the fiducial positions as 
measured with the stereo cameras are automatically localized 
and manually labeled. Note that the detection and localization 
steps do not provide labels. Though labels are usually provided 
by tracking, here the evaluation focuses on localization 
accuracy while removing tracking accuracy as a confounding 
factor. The camera-based fiducial measurements are rigidly 
registered to positions measured with the optically tracked 
stylus and the residual error is reported. Registrations are 

computed using a conventional least-squares singular value 
decomposition point-based registration method [42], and 
fiducial registration error (FRE) is measured as the root mean 
square of the distances between registered point sets as defined 
by Fitzpatrick et al. [43]. Additionally, to measure the accuracy 
of the gold standard measurements, for one subject, fiducial 
positions were measured repeatedly with the optically tracked 
stylus. All combinations of these point sets were rigidly 
registered, and the average FRE is reported as a baseline error 
metric for this ground truth measurement technique. 

With respect to assessing tracking fidelity, the rate of false 
positives, i.e. incorrect fiducials returned, was measured by 
examining fiducial positions in the 2D images, and by 
comparing 3D triangulated fiducial locations to stylus-
designated locations. The number of frames with no false 
positives is reported and represents how often the automatically 
detected fiducials can be used for reliable image-to-physical 
registration. For a frame f, the false discovery rate (1-precision) 
is described as 
       𝐹𝑎𝑙𝑠𝑒	𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦	𝑅𝑎𝑡𝑒B = 	

CDEFG	HIFJKJLGF
MIKDE	NGKG6KJIOF

× 100	%.    (2) 
The average false discovery rate is reported.  

Lastly, tracking completeness is evaluated with the number 
and distribution of visible fiducials not returned as output. In 
other words, this section analyzes how many fiducials are 
missed, and how these missed fiducials are distributed across 
the breast surface. To compare the automatic method to an ideal 
output from the stereo camera images, detection rate (recall) is 
considered as 

         𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛	𝑅𝑎𝑡𝑒B = 	
MTUG	HIFJKJLGF
MIKDE	VJFJWEG

× 100	%                (3) 
where the total number of visible fiducials is determined as the 
number of fiducials that could be localized in the camera images 
by augmenting automatic detection with manual point picking. 
Fiducials are considered not visible if their red fiducial centroid 
cannot be picked manually in the stereo camera images for a 
state. The analysis is extended to investigate completeness with 
regards to the full extent that could be captured with an 
alternative method not limited by line-of-sight (e.g. manually 
designated with tracked stylus) with 
                       𝐸𝑥𝑡𝑒𝑛𝑡B = 	

MTUG	HIFJKJLGF
Z[	BJ\U6JDEF

× 100	% .                     (4) 
It should be noted that the number of frames in each breast 

acquisition state analyzed is not necessarily evenly distributed 
as no specific protocol was in place for the length of time 
recorded in each static arm position. Since arm up 
configurations generally expose a greater number of fiducials 
to the cameras, an unweighted average may show that cases 
with more frames in the arm up position have better 
completeness metrics. To remove this bias, completeness 
metrics for each case are first averaged by state, then averaged 
across all three states. Additionally, the completeness metrics 
did not include phases of motion or obstruction. 

III. RESULTS 

A. Detection: 3D Localization Accuracy  
Localization accuracy was evaluated in the three static arm 

states (one evaluation per state) for seven of the eight cases. One 
case, case 5R, was omitted due to missing still images time-
synced with NDI collection. Accuracy is reported as the FRE 
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associated with registering fiducial points localized from the 
stereo camera system and the corresponding points designated 
with an optically tracked stylus. On average, 22.0 ± 2.4 fiducials 
were automatically localized with the camera system. Table I 
reports the accuracy (FRE) and the average number of fiducials 
used to compute the rigid registration, averaged across all 3 
states. After rigid registration, automatically localized fiducials 
differed from the ground truth stylus-designated positions by 
1.6 ± 0.5 mm. As reported in [33], when static fiducial positions 
on the breast were measured with the optically tracked stylus 
repeatedly five times FRE was 1.5 ± 0.1 mm. The two 
distributions of FRE were compared with an unpaired t-test 
(a=0.05) and were not significantly different (p=0.54). 

TABLE I 
LOCALIZATION ACCURACY 

CASE AVERAGE  
ACCURACY (MM) 

AVERAGE NUMBER OF 
FIDUCIALS LOCALIZED 

1L 2.6 20.0 
2R 1.9 25.0 
2L 1.5 22.7 
3R 1.6 23.7 
4R 1.2 21.3 
5L 1.4 23.0 
6L 1.3 18.0 

AVERAGE 1.6 ± 0.5 22.0 ± 2.4 

 

B. Tracking: Fidelity 
Tracking fidelity is only evaluated in static frames as these 

are the only acquisition times where the corresponding ground 
truth 3D fiducial locations (stylus-designated) are available for 
verification. Though a tracking algorithm should successfully 
track through large deformations and obstructions, it is 
reasonable to assume that surface data will be collected during 
static, unobstructed scenes. Here, all video frames were 
processed for tracking, though performance during 
deformations and obstructions is only shown for cases 1L and 
3R. Figure 3 shows the true positive and false positives over 
time through the entire protocol for cases 1L and 3R. For these 
cases, full videos are available in the supplementary material 
with annotated algorithm performance. In Figure 3, the video 
frames from various experimental phases are displayed for case 
1L, demonstrating how obstructions in the scene result in a 
lower number of localized fiducials. The total number of frames 
processed for tracking and the number of static frames analyzed 
are reported in Table II alongside the false discovery rate and 
the total number of false positives. Since no frames had more 
than one false positive, the number of false positives also 
represents the number of frames with unusable output for 
registration. In the worst case (5R) where 7/267 frames have 
false positives, still over 97% of frames are usable for reliable 

 
Fig. 3 Data collection and processing throughout the entire video for two representative cases: 1L and 3R. Note performance recovery after 
obstructions and false positives. The three arm configurations where accuracy was measured are overlaid: arm up (left), surgical position, and 
arm down (right). Video content is classified into four categories: static frames (no highlight), adduction frames (blue), ultrasound collection 
(gray), and other scene interference (yellow). Number of fiducials that are true positives (black line), false positives (red +), and manually 
localized in static frames (magenta dashed line). Highlighted frames are processed but excluded from reported metrics.  

Arm DownArm Up

Ultrasound Data Collection

1L

3R

State 
Change

a

b

Surgical Position

c
e f g

h

Scene 
Interference

State 
Change

d

h
f ge

d
cb

a

Ground Truth
True Positives
False Positives



 

 

8 

registration. Overall, on average 99.1 ± 1.1 % of frames are 
usable. 

TABLE II 
TRACKING FIDELITY 

CASE 

TOTAL 
FRAMES 

TRACKED 

STATIC 
FRAMES 

ANALYZED 

TOTAL 
FALSE 

POSITIVES 

FALSE 
DISCOVERY 
RATE (%) 

1L* 1227 295 5 0.1 
2R 1507 431 0 0.0 
2L 874 206 0 0.0 
3R* 1220 185 1 0.0 
4R 582 132 3 0.1 
5R 1312 267 7 0.2 
5L 790 129 0 0.0 
6L 575 171 0 0.0 

AVERAGE 1011 218 2 0.1 ± 0.1 
*performance visualized in Figure 3 

C. Tracking: Completeness 
The average detection rate was 85.6 ± 5.9%, showing that a 

large majority of visible fiducials can be automatically detected 
and localized as visible in Figure 4. All static frames returned 
at least 10 fiducials for registration, with 75% of cases returning 
a minimum of 18 fiducials across all frames. In retrospective 
analysis, the fiducials that were more frequently missed resided 
on the lateral edge of the breast surface, closest to the arm, 
where the surface deviates from relative planarity as displayed 
in Figure 5. While highly performant, the algorithm was found 
to struggle with some letter distortions due to large 
deformations. To illustrate this trend, the magnitude of 
deformation due to arm adduction is shown in the right column 
of Figure 5. This drop-out due to distortion is most notable in 
the upper outer breast quadrant (i.e. fiducials closest to the 
armpit) like the letter “C” in the top row of Figure 5. Also, it is 
interesting that not all fiducials with large displacements suffer: 
more medial fiducials that undergo large deformations are able 
to be localized with low dropout rates (e.g. the letter “B” in the 
top row). With regards to extent, although the cameras suffer 
from line of sight constraints, 82.6 ± 9.2% of the full 26 
fiducials can be localized automatically (Figure 5 – Center 
column). 

IV. DISCUSSION 
This work demonstrates a successful surgical field 

monitoring system that can capture nonrigid skin motion with 
accuracy, fidelity and completeness such that it can be used to 
promote new directions in surgical guidance. The inked 
fiducials are easy to place and are amenable to sterile processes, 
as they can remain on the skin surface throughout surgery. The 
large letter label provides a feature rich surface and the small 
fiducial dot provides a precise localization target. These labeled 
landmarks localized both on the breast skin and in preoperative 
imaging can be used to drive a registration framework for 
visualizing and navigating around tumor boundaries and other 
breast anatomy. While quite preliminary, initial surgeon 
impressions with the lettered fiducials integrated into a 
guidance system were met with considerable enthusiasm as 
letters provide naturally understandable landmarks between the 
patient and the guidance display. 

In comparison to existing alternatives that for BCS 
intraoperative fiducial measurements, localization accuracy for 
automatic detection was not statistically different from manual 
digitization using an optically tracked stylus. However, it 
should be noted that the accuracy of stylus-designated data is 

 
Fig. 4 Average number of fiducials automatically localized (TP= true 
positives), compared to the average number of fiducials visible (top 
line of each bar). False negatives (FN) and false positives (FP) are 
considered missed fiducials. 

Fig. 5 Distribution of missed fiducials for three cases, shown in the 
arm-down state. Left - detection rate, or missed fiducials with respect 
to all visible fiducials. Center - extent, or missed fiducials with respect 
to all 26 placed fiducials. Right - fiducial displacement from arm up to 
arm down states.  
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user-dependent which was noted during data collection. For 
example, manual stylus digitization without deforming the 
surface was challenging while the subject was breathing. 

Though this work focuses on the algorithm’s utility within 
image-guided breast surgery, the advancements presented here 
are relevant to other organ systems and applications as well. 
While this method would be more difficult to apply to an 
internal organ system, it could have applications in other 
surface organs, such as the abdomen, for image-to-physical 
registrations for guiding percutaneous abdominal interventions 
[4] or for patient positioning in radiation oncology [44]. 

As a general note, the tracking algorithm presented here was 
designed and evaluated within the context of utility in image 
guided surgery. While some algorithms may balance all 
evaluation metrics, utility in the surgical guidance application     
relies on a low false positive rate, as frames with false positives 
cannot be used for registration. Consequently, aggressive error 
catching was implemented to prioritize a low false positive rate 
over a high detection rate (i.e. it is preferable to miss some 
fiducials, as long as all fiducials are trustworthy). 

The tracking algorithm is highly reliable with a low false 
positive rate suitable for use in surgery. The algorithm suffers 
most with completeness, as line-of-sight constraints can 
confound detection rate and extent. For example, for the two 
subjects that had both breasts processed, the breast with better 
line-of-sight (i.e. larger simulated rotation of the table to 
provide a more favorable viewing angle) performed better. For 
case 2, the right breast was more favorably angled than the left, 
and for case 5 the left breast was more favorably angled than 
the right. Intra-subject performance differences are visible in 
cases 2 and 5 in Figure 4, with 2R and 5L outperforming their 
counterparts. 

 Despite line-of-sight constraints, an adequate number of 
fiducials can be localized for a reliable registration. The 
minimum number of localized fiducials for most cases was 
above 15, far more than the 6-8 fiducials used for registration 
in initial breast guidance methods [18, 19], or the 11 fiducials 
necessary to fully describe rigid breast deformations [33]. On 
average, 21 fiducials could be localized, providing distributed 
coverage of surface data to drive potential nonrigid correction 
frameworks.  

For case 5R, there were two frames where only 10 fiducials 
could be automatically localized. This low minimum was due 
to a reduced point cloud returned from KAZE feature matching 
whereby fiducials were still correctly detected in each image, 
but the algorithm failed to successfully match keypoints 
between left and right images. This case suffered from a variety 
of confounding factors: white-balance discrepancies between 
left and right images, shadows, and subtle motion due to subject 
re-adjustment. Though all of these problems are visible in other 
cases, we hypothesize that the combination of all three factors 
caused the unusual dip in the number of localized fiducials.  

As noted in Section III.C, largely distorted fiducial labels 
become more difficult to match to the object’s feature history. 
This effect may be particularly detrimental as points with large 
displacements are likely to be the most informative to 
registration. However, the breast would not be subjected to the 

full range of arm motion intraoperatively–only half the range of 
motion is needed to move from imaging position (arm up or 
down to fit within a closed bore scanner) to intraoperative 
position (90° abduction). 

With respect to limitations, there are several aspects that are 
important to consider: (1) skin tone variations, (2) ink colors, 
(3) lighting variations, (4) processing time, and (5) 
reproducibility. 

Beginning with skin tone variations, these were not explored 
in this manuscript as all volunteers for this study were 
Caucasian. Evaluation on a variety of human skin colors 
remains to be evaluated. However, the algorithm is specifically 
designed with skin tone variations in mind, with fiducial 
detection performing well in the blue color component images 
across phantoms of various skin tones [45] from previous work. 
A predecessor to the detection process presented here is 
described in [45] though correspondence between 2D fiducial 
candidates was determined with optical character recognition. 
The previous approach showed that this 2D detection method 
was robust to phantoms of differing skin tones; however, the 
algorithm experienced large dropouts at the correspondence 
step due to the poor performance of the preliminary optical 
character recognition approach.   

When reflecting on the second limitation of ink colors, it is 
important to consider the use of red ink in light of the eventual 
presence of blood after incision. In this work, an algorithm that 
leveraged two ink colors on opposite sides of the color wheel 
was implemented. Though the concept of color channels is 
leveraged heavily in this approach, the color channels do not 
need to be prescribed to blue and red. Preliminary 
investigations not reported here show that alternative ink colors 
can be transformed in hue saturation value (HSV) space to map 
the label color to an equivalent of the blue color channel, while 
mapping the fiducial color to the red color channel. The use of 
purple letters and green fiducial centroids is under 
consideration currently. More comprehensive evaluation of 
algorithm performance under these conditions remains to be 
investigated further. In regards to scene interference in the 
pertinent color channels, the algorithm may struggle with 
potential skin discolorations (e.g. bruising). Though a third 
color ink could be used to cover skin markings, ink-covering of 
these regions may not always be possible. It should be noted 
that here the ultrasound gel was tinted blue (the same color as 
letter-labels), and in some cases residual gel remained spread 
across the breast during the static frames evaluated. While the 
algorithm sometimes struggled with specular reflections from 
ultrasound gel, the color tint generally did not interfere with 
adaptive thresholding. Scene interference in the red color 
channel (e.g. the red cap of the ultrasound gel bottle) is 
generally more intrusive to performance, as obstructions close 
to the true fiducial location can cause false positives. This can 
be observed in the supplementary videos. 

With respect to lighting variations, while some insight was 
gained from the introduction of ultrasound gel, more 
investigation is needed. Apart from glare on the gel, the videos 
acquired did include footage containing moving shadows, but it 
is difficult to study the impact given that the bright overhead 
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lights typically present in the OR were not part of our mock 
surgery experimental setting. With proper exposure, the breast 
surface should be clearly illuminated with little impact on 
algorithm performance although future investigations are 
warranted. 

Runtime evaluation, the fourth limitation, also remains to be 
optimized. The current processing rate is about 2.5 seconds per 
frame, with the large majority of that time spent on KAZE 
feature detection and matching. Speed improvements could be 
achieved by implementing this algorithm on a graphical 
processing unit (GPU) in an a more efficient programming 
language than MATLAB and by using AKAZE feature 
matching. Accelerated KAZE has shown dramatically 
improved speeds with little effect on matching performance 
[46], and KAZE implementations on a GPU have been shown 
to offer tenfold speed improvements with no degradation in 
performance [47]. Machine learning approaches may also offer 
speed improvements; however, they may be particularly limited 
by a small mock-intraoperative dataset. The system presented 
in this work could be deployed in surgery and used for guidance 
while simultaneously collecting a representative dataset for 
future investigations into machine learning approaches. Future 
machine learning approaches should also be careful to remain 
unbiased to skin tone variations. Additionally, improvements to 
various aspects of the algorithm may introduce new pitfalls. For 
example, a more complete keypoint cloud could yield better 
tracking on steeply curved surfaces, but would likely require 
more error filtering due to difficulties localizing fiducials on the 
breast edges (e.g. due to shadows or line-of-sight constraints). 
Nevertheless, the current implementation can provide 
continuous updates with a sampling rate of 2.5 seconds. 
Similarly, it can provide on-demand updates to a guidance 
framework with minimal wait times. Although surgery would 
be briefly paused for a registration update, an on-demand 
framework would be far less intrusive than current clinical 
seed-based guidance approaches that require the surgeon to halt 
surgery and use a handheld probe to survey the field manually. 
Additionally, existing seed-based systems only provide a 
distance readout to a preoperatively implanted point-based 
target, which would be considerably inferior to accurately co-
registered supine MR imaging data.  

Lastly, when considering reproducibility, the algorithm 
assumes several constraints to data collection. As previously 
mentioned, each fiducial label should be continuous to provide 
an adequate bounding box. Labels should also be placed around 
the planned incision so that they are not split during resection. 
Though if a label is split, manual intervention with ink or re-
initialization would allow continued tracking. Labels should 
ideally be unique, to ensure that features are correctly matched. 
For best performance, fiducial labels should be uniform in size 
which allows more erroneous boxes and fiducial candidates to 
be eliminated based on size limits. Some cases here have 
relatively nonuniform letter size and thickness (as visible in 
Figure 5), and it should be noted that thicker inked lines provide 
better performance in the adaptive thresholding stage, as thin 
lines may break into multiple boxes creating erroneous 2D 
candidates. While the algorithm was generally robust to these 

variations, standardizing fiducial size and line thickness may 
reduce erroneous candidates and improve performance further.  
In summary, inked fiducial type, coloring, and arrangement can 
influence performance and protocol to control these factors 
remains to be further investigated.  

Despite these limitations, this methodology is evaluated on a 
challenging dataset that incorporates many realistic 
confounding factors from major and minor deformations, 
obstructions, and scene interference. The approach 
demonstrated accuracy and robustness (Tables I and II) that 
make it a promising solution for soft tissue monitoring in the 
OR. 

V. CONCLUSION 
This work presents a novel method for precise intraoperative 

fiducial localization that is robust to interference from tools, 
occlusions, and most distortions of the skin surface. Fiducial 
inked-letter labels provide an intuitive mapping between 
landmarks written on the breast and landmarks on an image-
guided display to more easily orient the surgeon during surgical 
navigation. This approach is contactless, automatic, and 
localizes all fiducials simultaneously providing one snapshot of 
the breathing cycle. The surface acquisition process is amenable 
to surgical workflows with fiducials that can be hand-drawn, 
sterilized, and remain on the breast surface throughout surgery. 
This method opens opportunities to move breast guidance 
beyond initial single-shot rigid alignments and towards 
continuous correction allowing for automatic updates to an 
image guidance system. Going even further, by providing dense 
fiducial coverage with high fidelity and precision, this data can 
serve as input into a deformable correction method to improve 
the accuracy of breast tumor localization. The work presented 
here demonstrates clinical utility of computer vision for 
monitoring soft tissue in the surgical field. 
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